Apple Ill Computer Information e« Doc # 157 -«

Fonts & Character Set Information

T R R e R R R T s e

Apple /// Computer Information

T R Y O Rl 1 S PO St O STHR S BRI, s b,
R AT R O I R T e A Ly - :

B B

AR

5

S,

TR LB

EkatAen

%
L
4
o
&
&
s
=
3
%
£
o
&
2
Z
E
=
iz
I
|
&

DOCUMENT NAME
FONTS AND POWNLOADING
CHARACTERS

| [T

=
4
a3
7]
&2
B
e

e

1Pt

~ ExLibris David T. Craig =~

s S n— .
S A T I, GGG INITTY S IO e R L T

“ 094.PICT” 237 KB 2001-08-29 dpi: 300h x 300v pix: 2156h x 2910v

| Source: David T. Craig

Page 0001 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

[.)
4/23/90 10:09 AM Source Disk:A///. FONT.INFO.TEXT Page 1

1 Title: Fonts and downloading characters -

2 Created by: SYSOP on: 11/22/1988 13:45:08

3

4 August 21, 1986 Gemn(CDMML‘)NLJ File Length: 7,000 chars.

5 rom

6 From: Chris Acreman mxﬂ feﬂf

7

8 Does anybody know how programs like System Utilities and Backup // draw

9 those horizontal lines across the screen? They don't use the GRAFIX driver.

10 If it is a character, I have not been able to identify it. It is not a
11 series of underscores, across the "bottom"” of the line of characters. It

12 1looks more like a series of hyphens, across the "middle"™ of the line, except
13 the hyphens span the full width of the character. If that is an ASCIT

14 character, I haven't found it.

15 Thanks for any help you may offer.

17 Chris

20 Chris;

21 if you have a program for font editting like Fontwriter or Draw On

22 ///, you can load the entire font in to look at it. Tt is possible that these
23 are characters that are assigned to Ascii 0-32, i.e. control characters. Capn
24 Magneto works off this principle.

25
26 Weber Baker
27 ——————
28
29

30 Chris: I believe both programs are using a custom font. I have the source
31 code here in ///'s Company for a Pascal program that will extract the font

32 from any boot disk for you and save it in a separate file, from which you can
33 then install it on any boot disk of your choice by using the SCP.

3 o Gooding

36

37

38

39 Ed, Is it possible to change fonts from within a Pascal Program? I.e. - can
40 you modify specific characters or completely replace the entire font setup.
41

42 I want my application to use a custom font set and then set it back to normal
43 when the program terminates.

45 Thanks. Harry Baya

49 Harry:

51 See Rick Sidwell's response to Chris below. I was wrong about the font, it is
52 done differently. It appears to be done exactly the way you want to replace
53 your font characters and then restore them. I suggest that you get in touch
54 with Rick for more details; this was news to me, also. Thanks, Rick.

56 Ed

60 Chris/Ed/Harry:

62 The underscore-like characters are made with custom characters, but they are

63 not in the font on the system utilities disk--otherwise, how could you run

64 system utilities from your Profile as a normal Pascal program. The .CONSOLE

65 driver has a control call for downloading a few characters. System Utilities

66 redefines a few characters for its ‘graphics', and restores the original

67 characters when you exit. If you have Pascal, try running it from the Pascal

68 system (i.e., not as the SYSTEM.STARTUP program, then using Control-\ to break

\. J

“ 095.PICT” 238 KB 2001-08-29 dpi: 300h x 300v pix: 2365h x 3078v
| Source: David T. Craig Page 0002 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

e :))
4/23/90 10:09 AM Source Disk:A///.FONT.INFO.TEXT Page 2
69 out of the program. The characters will be intact. (Sorry, I can't remember
70 where they are--try the highest control characters).
71
72 Rick Sidwell
73
74
75 Chris -
76
77 Those lines you're asking about don't seem to be any special characters in
78 the character font--I've used the FONT CAPTURE program in DL7 to extract the
79 character set from a SOS boot disk, then used the ENCD3.BAS program
80 to change the filetype from PASCAL DATA to FONT, and finally used ON THREE's
81 FONTDEMO program (in BASIC) to look at the complete character set: Nothing
82 there that would satisfy your question. I know that's no help in identifying
83 how it IS done . . .
84
85 - Bart Cable
86 C—
87
88
89 Chris/Ed/Harry/Bart/all,
90
91 The characters which do the borders in System Utilities and similar packages
92 are special characters which are downloaded AT THE TIME THE APPLICATION IS
93 STARTED. They appear to be within the program code itself, and are not a
94 separate character set. For System Utilities, they exist in the ASCII values
95 from 16 to 31. To do this yourself, you will need to perform the following:
96
97 1. Use a font (character set editor) to create your own character set which
98 contains special charcters for vertical and horizontal bars, and curved
99 corners. You can also do left and right arrows, etc. Save the character
100 set to a file name to be loaded later by a Pascal program.
101
102 2. Set up your program to read the font file from step 1 above and send it to
103 the console driver. See the Pascal Programmer's Manual Volume 1 (pg 211 -
104 UNITSTATUS) and the Standard Device Drivers Manual (pg 70 - Control code
105 16 [Download Character Set]).
106
107 3. Use the UNITWRITE procedure (see Pascal Programmer's Manual Volume 1 -
108 page 207) to send the character values to the screen to create the "box"
109 where you want it or to send any other of the special characters to the
110 screen. As I remember, you have to add 128 to the value of each such
111 character so that it will not be interpreted by the console driver as a
112 control character. For example, if ASCII 16 is a horizontal bar you
113 have to send the ASCII value 144 to the console to get the character,
114 rather than the control effect of setting the color as specified in
115 the Standard Device Drivers Manual.
116
117 As an alternative to step 1 you can define bit patterns for the characters
118 you wish to modify in your Pascal program and use the Control Code 17 (Load
119 Partial Character Set) to create the special characters.
120
121 If you have Daryl Anderson's Ascii Chart module you can view the characters
122 used in System Utilities by activating it within System Utilities. If you
123 have Desktop Manager, ask Bob Consorti for a copy of his Ascii Chart module
124 that I modified to show the control characters, and implement it within
125 System Utilities.
126
127 Hope this helps.
128
129 Best Regards,
130 Milt Johnson
131
132 e
133
134 Toll:
135
136 I'1l tell you how to do it, but I won't have time for a couple of weeks to

J

“ 096.PICT” 264 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v

| Source: David T. Craig Page 0003 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

(4/23/9010:09 AM Source Disk:A///.FONT.INFO.TEXT A Page 3 |

137 come up with some code to do it (I'm going on vacation). You use the

138 CONSOLE driver control code 16 (for the entire character set) or 17 (for just
139 a few characters) to change the character set to what you want. To restore
140 it, you use the same codes! .The trick is to save the original characters

14l before changing it in the first place. The current character set is stored
142 at locations $C00~-$FFF. You will need an assembly language procedure to

143 access these locations from Pascal.

144

146

147

148

149 Dear Rick,

150 Please do enjoy your vacation, but when you return, I WILL bug you about

151 this, gently of course. I will very much appreciate your help since I know
152 boobkis about assembly language. Thanks for your tips and I'll look forward
153 to that "tutorial". -- Chris

154

155

156

157 Rick, I too would greatly appreciate some sample code to modify fonts from
158 within a program. It could be as short as just the lines to cause the actual
159 change - without a good demo program - or whatever you want.

160

161 Have a good vacation and I and Chris will remind you, gently, when you get
162 back.

163

164 Thanks, Harry

165

166

167

168 To All:

169

170 Just about everything you want to know about loading fonts:

171

172 "The Changing Character(s) of the Apple ///"™ by John Jeppson

173 Softalk, April 1982. Pages 135-142

174

175 The program in the article is in MAUG's DL7 under the name "JEP"

176

177 briefly:

178

179 10 INVOKE "download.inv"

180 20 DIM a%(512):array$="a%"

181 30 INPUT"What font do you want to use? ";a$

182 40 expr$=CHRS (34)+a$+CHRS (34)

183 50 PERFORM getfont (@expr$, @array$)

184 60 PERFORM loadfont (@array$)

185 70 END

186

187 --Erik Olbrys

188 —_—
189

190 09/12/86 13:13:36
191

192 The following was contributed by Rick Sidwell, and answers the questions posed
183 above about manipulating characters sets from within an application program:
194

195

196 DOWNLOADING APPLE /// CHARACTER SETS

197

198 One of the powerful features of the Apple /// is the ability to change

199 the character set used to display characters on the screen easily from a
200 program. A program can define its own characters to perform special

201 effects such as drawing graphics on the text screen. A good example is

202 the System Utilities program which uses custom characters to draw boxes

203 around things and display arrows as they appear on the keyboard to help

204 the user. However, any program which changes the system character set

\ J

“ 097.PICT” 229 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v
| Source: David T. Craig Page 0004 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

~
(4/23/90 10:09 AM Source Disk:A/// FONT.INFO.TEXT Page 4
205 should be careful to restore it before exiting so that other programs
206 can use the normal character set. This isn't very difficult to do, but
207 it requires the use of assembly language, and is thus a bit tricky.
208
209 For purposes of this discussion, let's use Pascal. Similar techniques
210 can be used with other languages. To begin with, we need to have a TYPE
211 for character sets:
212
213 Type Charset = Packed Array [0..127, 0..7] of 0..255;
214
215 A character set consists of 128 characters (numbered 0 through 127),
216 each consisting of 8 rows. Next, we need a procedure to download
217 character sets. Referring to the Standard Device Drivers manual, pages
218 70 and 169-171, the following procedure will do the trick:
219
220 Procedure LoadCharset (C:Charset) ;
221 Var RequestCode: Packed Record
222 Channel: 0..1;
223 Stat_or Ctrl: 0..1;
224 Request_Num: 0..255;
225 Reserved: 0..63;
226 End;
227 Begin { LoadCharset }
228 RequestCode.Channel := 0;
229 RequestCode.Reserved := 0;
230 RequestCode.Stat_or Ctrl := 1;
231 RequestCode.Request_Num := 16;
232 UnitStatus(1l,C,RequestCode) ;
233 End { LoadCharset };
234
235 This just performs a UnitStatus to the .CONSOLE driver with a request
236 code to download a character set. So far, so good; now for the tricky
237 part: restoring the system character set. To do this, we need to copy
238 the system character set before we download our own; restoring it when
239 we are done is as easy as another call to LoadCharset. The current
240 character set is stored in system memory at locations $C00-S$FFF. The
241 .CONSOLE driver stores the new character set here as well as loading it
242 into the character generator so that the .GRAFIX driver can use it for
243 drawing characters onto the graphics screen. Note that anyone can read
244 this character set, but only the .CONSOLE driver should modify it so
245 that it remains consistent with the character set displayed on the text
246 screen. Copying data from system memory to Pascal memory can be done
247 only from assembly language. For the convenience of programmers not
248 proficient in assembly language in the Apple ///, here is a complete
249 assembly language procedure which copies the character set.
250
251 ; Assembly procedure to copy the system character set to a user variable
252
253 ; Pascal interface: Procedure SysCharset (Var C:Charset);
254
255 ; Some standard macros
256 .MACRO POP
257 PLA
258 STA $1
259 PLA
260 STA $1+1
261 .ENDM
262
263 .MACRO PUSH
264 LDA $1+1
265 PHA
266 LDA %1
267 PHA
268 .ENDM
269
270 ; Some zero page temporaries
271 Return .EQU 0EO ;To save return address
272 Ptr .EQU 0E2 ;Pointer to user's variable
\. J

“ 098.PICT” 237 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v

| Source: David T. Craig

Page 0005 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information
‘ ; ~ ~)
4/23/90 10:09 AM Source Disk:A/// FONT.INFO.TEXT Page 5

273 SysSet .EQU O0E4 ;Pointer to system charset

274

275 .proc SysCharset, 1

276

277 POP Return ;Save return address

278 POP Ptr ;Get location to put charset

279 LDA #00 ;Set up pointer to system charset

280 STA SysSet

281 LDA #0C

282 STA SysSet+1

283 ~— LDA SysSet+1601 ;Save o0ld X-byte

284 = PHA

285 LDA #8F ;System charset is in system bank

286 STA SysSet+1601

287

288 LDY #0

289 NxtChr LDA (SysSet), Y ;Copy a character

290 STA (Ptr),Y

291 INY ;Do next one

292 BNE NxtChr

293 INC Ptr+l

294 INC SysSet+1

295 LDA SysSet+1 ;See if done (if we reached $1000)

296 CMP #10

297 BCC NxtChr

298

299 *“~~ PLA ;Restore X-byte for Pascal

300 STA SysSet+1601

301 PUSH Return

302 RTS

303

304 .END

305 .

306 The code is straightforward for those familiar with assembly code; the

307 only tricky part is saving the X-byte of the variable we use to access

308 system memory (SysSet) and restoring it before returning so that Pascal

309 will not get confused. To use it, copy it into a file, assemble it, and

310 then link it into your program. It defines a procedure called

311 SysCharset which copies the current character set into a Pascal

312 variable. Here is an example program to demonstrate its use:

313

314 Program TestCharset;

315

316 Type Charset = Packed Array (0..127, 0..7] of 0..255;

317

318 Var SysSet: Charset;

319 C: Char;

320 S: String;

321 F: File of Charset;

322

323 Procedure SysCharset (Var C:Charset); External;

324 { The assembly language program to get the system character set }

325

326 Procedure LoadCharset (C:Charset);

327 { Loads the character set C into the character generator }

328 Var RequestCode: Packed Record

329 Channel: 0..1;

330 Stat_or Ctrl: 0..1;

331 Request_Num: 0..255;

332 Reserved: 0..63;

333 End;

334 Begin { LoadCharset }

335 RequestCode.Channel := 0;

336 RequestCode.Reserved := 0;

337 RequestCode.Stat_or Ctrl := 1;

338 RequestCode.Request Num := 16;

339 UnitStatus(1,C,RequestCode) ;

340 End { LoadCharset };
_ J

“ 099.PICT” 190 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v
| Source: David T. Craig Page 0006 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

<

(4/23/90 10:09 AM Source Disk:A///. FONT.INFO.TEXT Page 6)

341

342 Begin { Main program }

343 { First, save the system character set in SysSet }
344 SysCharset (SysSet);

345

346 { Ask the user for a file with a new character set }
347 Write('Character set to load: ');

348 Readln(s):;

349 Reset (F,S);

350

351 { Load the user's character set and close the file }
352 LoadCharset (F*);

353 Close(F);

354

355 { Put some characters on the screen to show off the new character set }
356 For C:=' ' to '~ ’

357 Do

358 Write (C);

359 Writeln;

360

361 { Wait until the user is ready to exit }

362 Write('Press return to exit. ');

363 Readln;

364

365 { Restore the old character set before exiting }

366 LoadCharset (SysSet);

367 End.

368

369

370 . EXERCISES

371

372 1. It is often not necessary to download a complete character set. The
373 System Utilities program, for example, downloads only a few characters
374 so that it can draw boxes and arrows. Explain how to do this.

375

376 2. Write an invokable module for Business Basic so that programmers can
377 write Basic programs which use custom fonts but restore the system font
378 before exiting.

379

380 e e e
381

382 10/03/1986 01:31:18

383 T find it very interesting that this discussion has been going on here... I was

384 just about to upload a related file, so I will do it here. System Utilities
385 wuses to handle its windows, horizontal lines, etc. characters established by
386 the Dirstuff and Prims2 units, wwhich have been "Krunched" into the

387 SYSTEM.STARTUP codefile using a Library Kruncher program, which strips away
388 the interfaces and binds the units together with the codefile. The Dirstuff
389 unit is well documented in the "Pascal Programmer's Toolkit Manual" available
390 from ATUNC, and that documentation also covers some of the Prims2 routines,
391 although it never specifically mentions them as Prims2. The only documentation
392 for Prims2 is the comments in the INTERFACE section, which I have extracted
393 using LIBMAP.CODE (which I also used to examine System Utilities... got the
394 unit names, but no interface there) and provide here for your perusal. Note
395 that these routines do all those things WITHOUT requiring the .GRAFIX

396 driver... they are entirely self contained, and I am sure with a little

397 experimentation, one or more ingenious hacker could figure a way to load ANY
398 character set using them. As a side benefit, of course, one also has the

399 handy file selection and keyboard I/O capabilities provided by Dirstuff

400 available.

401

402 Below you will find the file, as I prepared it for upload:

403

404 Tom Betz

405 —m8

406 o e e

407

408 Friends and fellow ///ers!

\. J

“ 100.PICT” 236 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v
| Source: David T. Craig Page 0007 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

B)
c1/23/90 10:09 AM Source Disk:A///.FONT.INFO.TEXT Page 7
409
410 As promised so long ago, here's the INTERFACE section to to the PRIMS2
411 Library Unit, as provided by LIBMAP.CODE; some interesting routines named
412 here, as well as the major control characters defined as constants.
413 Anybody have any ideas what they are? I have heard them mentioned in
414 terms of Kernigan and Ritchie.. don't know enough about C to make a
415 meaningful comparison. I'd be interested in comments... if you like, I'll
416 run Codefile Transmitter over the Unit and upload it... what do you think?
417
418 Tom Betz
419
420
421
422 Segment #38:
423 System version = A3/2.0, code type is 6502
424 PRIMS2 library unit (LINKED INTRINSIC)
425
426
427 (P e . *
428 | PRIMS2 - String Version of Primitives - Updated 08/28/83 |
429 K e e e e e e L *}
430
431 USES sosio, chainstuff;
432
433 CONST {[3=13/401}
434 max_open = 12; {max number of open files allowed}
435
436 ioread = 0; - {read mode for a file}
437 iowrite = 1; {write mode for a file}
438
439 f_avail = 0; {file types}
440 f_text =1; {1
441 f ascii = 2; {1
442 f char = 3; {1
443 f_code = 4; {}
444
445 maxstr = 132; {max length of a "strng"}
446
447 {Special font characters defined by define new font}
448 err u_arrow = 134; fup arrow used in error msg}
449 err_d_arrow = 135; {down arrow used in error msg}
450 err_1 arrow = 136; {left arrow used in error msg}
451 err r arrow = 137; {right arrow used in error msg}
452 left_side = 138; {left side bar/dash intersection}
453 right_ side = 139; {right side bar/dash intersection}
454 top_left = 140; {top left corner for window frames}
455 top_right = 141; {top right corner for window frames}
456 bot_left = 142; {bottom left corner for window frames}
457 bot_right = 143; {bottom right corner for window frames}
458 bar = 144; {vertical bars on window frames}
459 dash = 145; {1st char of the right arrow}
460 right_arrow = 146; {2nd right arrow char}
461 up_arrow = 147; {up arrow char for "more above"}
462 down_arrow = 148; {down arrow char for "more below"}
463 upl = 149; {lst third of "more" for "more above"}
464 up2 = 150; {2nd third of "more" for "more above"}
465 up3 = 151; {3rd third of "more" for "more above"}
466 downl = 152; {lst third of "more" for "more below"}
467 down2 = 153; {2nd third of "more" for "more below"}
468 down3 = 154; {3rd third of "more" for "more below"}
469
470 TYPE {$p}
471 filedesc = integer; {file descriptors - NOT SOS ref num}
472
473 strng = string[140]; {string format}
474
475 bufr_ptr = ~io_buffer; {I/0 buffer pointers}
476
_ J

“ 101.PICT” 225 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v
| Source: David T. Craig Page 0008 of 0012

Apple Il Computer Information

e Doc#157 -

Fonts & Character Set Information

(4/23/90 10:09 AM

Source Disk:A/// FONT.INFO.TEXT

Page ?

4717
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

io_buffer

f_entry bufr

fct

io_blk_ptr
io_blk
cons_buffer

setofchar

VAR

nargs:
options:

ret_to_shell:

shell name:

stdin:
stdout:

console:
cons_d_num:

curr_prefix:
exec_prefix:

must_prefix:
must_suffix:

[l

PACKED ARRAY

PACKED ARRAY

RECORD

ref_nbr: integer;

ft: £_avail..f code;

ct: (c_console, c_printer, c_silent, c_other);
mode: ioread..iowrite;

filename:

curr_line:

line len:

line cp: integer;
pvt_bufr: boolean;
buffer: bufr ptr;
bufr cp: 0..1025;
bufr size:
end_of file: boolean;

END;
~io_blk;
PACKED ARRAY
PACKED ARRAY
SET OF char;
integer;
setofchar;
boolean;
string;

filedesc;
filedesc;

integer;
integer;

string;
string;

strng;
strng;

must_x, must_y: integer;

sel menu_x, sel menu_y: integer; {selector menu x/y coordinates}
sel_menu_len:

lib sw:
err bell sw:

dot_text_code:

codef_ setup:

valid chars:

{Universal Character Constants}

endstr:
endfile:
backspace:
tab:
newline:
escape:

integer;

boolean;
boolean;
boolean;
boolean;

setofchars;

char;
char;
char;
char;
char;
char;

[0..1025] OF char; ({I/0 buffers with 2
nulls at 1024-5)

[0..38] OF 0..255; {file entry buffers}

{File Control Table}

strng;
strng;
integer;

0..1024;

{pointer to standard I/0 blocks}
[0..511) OF 0..255; {a standard I/0 block}
[0..2048]) OF char; {big buffer for screen)

{a parameter type to some Primitives}

{[j=15/40]1}) {sp}

{total number of arguments}

{command options}

{true==>return to shell}

{shell name (default *shell/shell.code)}

{standard input file descriptor}
{standard output file descriptor}

{ .CONSOLE SOS I/0 ref nbr}
{device number for console}

{current Pascal system filename prefix}
{executing program prefix}

{"$" prefix for mustopen and mustcreate}
{"$" suffix for mustopen and mustcreate}
{screen x/y set by mustgetarg which are
used by mustopen and mustcreate}

{nbr of names shown in menu at any time}

{true==>treat '*' as *system.library.}
{true==>let write_error ring the bell}
{true==>add .text/.code if required}
{true==>setting up a codefile}

{valid read_keyboard chars}

{$00 end of string char}
{$03 end of file char}
{$08 backspace char}

{$09 tab character}

{S0D new line character}
{'\' special char trigger}

/

“ 102.PICT” 219 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v

| Source: David T. Craig

Page 0009 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

s : ﬂ)
4/23/90 10:09 AM Source Disk:A///FONT.INFO.TEXT Page 9
545 {Ascii codes $00 to $32} {[3=0/0,£-1}
546 anul { 00 } , a soh { 01 } , a_stx { 02}, aetx { 03}, a eot { 04 } ,
547 aenqg { 05}, a ack { 06 } , abel { 07}, a bsp { 08 } , a ht { 09 },
548 a lf (10}, avt {11}, aff {12}, acr {13}, aso {14},
549 asi {15}, adle {16}, a dcl { 17}, a dc2 { 18 } , a_de3 { 19 } ,
550 a_dc4 { 20 } , anak { 21 } , a_syn { 22 } , a_etb { 23 } , a_can { 24} ,
551 aem {251}, asub {261}, aesc {27}, a_fs { 28} , ags {291},
552 ars {30}, au {31}, asp {32} char;
553
554 have_error: boolean; {true==>and error was detected]}
555
556 cons_bufr: “cons_buffer; {ptr to big console buffer}
557 cons_len: integer; {number of bytes in "cons_bufr"}
558
559 open_tbl: ARRAY [l..max open] OF fct; {(File Control Tables}
560 {$p=———=--———- *
561 | Primitives |
562 e T *}
563
564 PROCEDURE str(n: integer; VAR s: string);
565 [NOTE: Here's ~ the very devil that causes my incompatibility problems!]
566 PROCEDURE trim blanks(leading: boolean; VAR s: strng; trailing: boolean);
567
568 PROCEDURE get_ td(VAR s: string):;
569
570 FUNCTION open_directory(dir name: strng; bufr: io_blk ptr): integer;
571
572 PROCEDURE close_directory;
573
574 FUNCTION next_dir entry (VAR file_entry: f_entry bufr): boolean;
575
576 FUNCTION dev_or_vol(name: strng): boolean;
577
578 PROCEDURE setup_filename (VAR name: strng; VAR ftype: integer);
579
580 FUNCTION openf (VAR name: strng; mode: integer; bufr: bufr ptr):
581 filedesc:;
582
583 FUNCTION createf (VAR name: strng; mode: integer; bufr: bufr ptr):
584 filedesc;
585
586 PROCEDURE next page(fd: filedesc; bufr: bufr ptr; VAR size: integer;
587 {Oolean) ;
588
589 PROCEDURE flush_buffer(fd: filedesc);
590
591 PROCEDURE put_out_line(fd: filedesc; VAR line: strng; len: integer) ;
592
593 FUNCTION getcf (VAR c: char; fd: filedesc): char;
594
595 PROCEDURE putcf (c: char; £d: filedesc);
596
597 FUNCTION getline(VAR s: strng; fd: filedesc): boolean;
598
599 PROCEDURE closef (fd: filedesc):;
600
601 PROCEDURE remove (name: strng);
602
603 FUNCTION set_echo(on _or off: boolean; fd: filedesc): boolean;
604
605 FUNCTION have_input (fd: filedesc): boolean;
606
607 FUNCTION getc(VAR c¢: char): char;
608
609 PROCEDURE putc(c: char);
610
611 PROCEDURE putstr(s: strng; fd: filedesc):
612
\.

J

“ 103.PICT” 212 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v

| Source: David T. Craig

Page 0010 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information
s) : —\
4/23/90 10:09 AM Source Disk:A/// FONT.INFO.TEXT Page 10

613 PROCEDURE putline (VAR s: strng; fd: filedesc);

614

615 PROCEDURE get_sos_error(sos_rc: integer; VAR msg: strng);

616

617 PROCEDURE p_error(msg: strng);

618

619 PROCEDURE p message(s: strng; fd: filedesc):

620

621 FUNCTION open_odometer (name: string; x, y: integer): integer;

622

623 PROCEDURE display odometer(od: integer);

624

625 PROCEDURE set_odometer (n, od: integer);

626

627 PROCEDURE close_odometer (od: integer);

628

629 FUNCTION interrupted: boolean;

630

631 PROCEDURE read_keyboard (VAR line: strng; delimiters: setofchar;

632 VAR delim: char; curs_at_eol: boolean);

633

634 PROCEDURE getxy (VAR x, y: integer);

635

636 PROCEDURE get_viewport_limit (VAR x, y: integer);

637

638 FUNCTION define new_font: boolean;

639

640 PROCEDURE restore orig font;

641

642 PROCEDURE write_ screen;

643

644 PROCEDURE put_out_str(s: strng);

645

646 PROCEDURE put_out_c(c: integer);

647

648 PROCEDURE point(x, y: integer);

649

650 PROCEDURE set_window(x1l, yl, x2, y2: integer) ;

651

652 PROCEDURE frame window(x1, yl, x2, y2: integer);

653

654 PROCEDURE write_error(linel, line2, line3, line4: strng;

655 responses: setofchar; VAR resp: char);

656

657 PROCEDURE clear error;

658

659 FUNCTION getarg(n: integer; VAR s: strng): boolean;

660

661 FUNCTION get_arg value(n: integer): integer;

662

663 FUNCTION expand filename(prompt: strng; VAR x, y: integer;

664 VAR fname, prefix, suffix: strng): boolean;

665

666 PROCEDURE must_get_arg(n: integer; filename: boolean; prompt: strng;

667 VAR arg: strng);

668

669 FUNCTION mustopen (VAR name: strng; mode: integer; bufr: bufr ptr;

670 prompt: strng): filedesc;

671

672 FUNCTION mustcreate (VAR name: strng; mode: integer; bufr: bufr ptr;

673 prompt: strng): filedesc;

674

675 FUNCTION prompt_for_filename (prompt: strng; VAR x, y: integer;

676 VAR fname: strng;

677 curs_at_eol: boolean): boolean;

678

679 FUNCTION search_directory(VAR name: strng; VAR selections: bytestream;

680 VAR max_selected, rc: integer): boolean;
. /

“ 104.PICT” 192 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v
| Source: David T. Craig Page 0011 of 0012 |

Apple lll Computer Information e« Doc# 157 < Fonts & Character Set Information

(4/23/90 10:09 AM Source Disk:A/// FONT.INFO.TEXT ‘ Page 11 |

681

682 PROCEDURE get_options{valid options: setofchar; options_ file: strng;
683 VAR options: setofchar);

684

685 PROCEDURE init_cmd(valid options: setofchar; options_file: strng;

686 get_args: boolean; in_bufr, out_bufr: bufr ptr);
687

688 PROCEDURE end cmd;

689 -

690

691

692

693 e —————————————
694

695 Segment #39:

696 System version = A3/2.0, code type is P-Code (least sig. 1lst)

697 PRIMS2 data segment

698

699 e —————
700

701 meeeeee

702 You will note that for windowing, horiz lines, etc, you need nothing more than
703 this.... This library unit could easily be the target of many hours of
704 interesting experimentation! I recommend getting the Toolkit and docs from
705 ATUNC (sysop's note: Apple Three Users of Northern California - see the

706 III.User.Groups/ directory) for all you Pascal hackers out there...

707
708 Regards,
709 Tom Betz
710
. Wy,

“ 105.PICT” 118 KB 2001-08-29 dpi: 300h x 300v pix: 2368h x 3113v
| Source: David T. Craig Page 0012 of 0012 |

